Lecture 11: Finish Alexpoly + obstr. From Donaldscns thu - Sorry for cancelling class

- plan for nest of semester:

Today: finish sone sm. obstructions owed fou before
Next week: hos special hepics - exotic \mathbb{R}^{4} s

- high dims e.g. $\Sigma g \hookrightarrow s^{4}$.

Last lecture: - Open problems lother directions
Juell

- Question session

One last invariant of knots:
Def $n \leqslant s^{3}$ with seifert surface F of genus g,
 with" symplectrc basis" $\left\{a_{i}, b_{i}\right\}_{i=1}^{g}$ ie. $\quad a_{i} \phi b_{j}= \begin{cases}p t & i=j \\ \phi & 0 / \omega\end{cases}$

$$
a_{i} \lambda a_{j}=b_{i}^{\phi} \lambda b_{j}^{0 / \omega}=\varnothing \quad \forall i \neq j
$$

$\operatorname{Arf}(k):=\sum_{i=1}^{9} l k\left(a_{i}, a_{i}^{+}\right) l k\left(b_{i}, b_{i}^{+}\right) \bmod 2 \in 7 / 2$.
Egg. $\operatorname{loh}(\mathrm{I})$

Fact: $\Delta_{k}(t)=1 \Rightarrow$ Kalg. slice $\rightarrow \operatorname{Arf}(k)=0$
Indeed, $\operatorname{Arf}(k)=0 \Longleftrightarrow \Delta_{k}(-1) \equiv \pm 1$ mods

$$
\operatorname{Arf}(k)=1 \Longleftrightarrow \Delta_{k}(-1) \equiv \pm 3 \bmod 8
$$

More generally. Avf defined fer quadratic forms over
[Forms, applying to "quadnatic refinement" fields of char 2. heifer pointing]
Goal: $\Delta_{k}(t)=1 \Rightarrow k$ ToP slice
[Converse not the!]
Recall from previous lecture [Lecture 7, May 16]
compact. "Equivariant intersection $\quad \lambda: H_{2}\left(\omega_{;} ; \Pi_{L}\left[\pi_{1} \omega\right]\right) \times H_{2}\left(\omega, \pi\left[\pi_{1} \omega\right]\right.$ oriented \& sey-intersection numbers" $76\left[\begin{array}{ll}4 \\ M\end{array}\right]$
$M: H_{2}(\omega ; \Pi u \pi m) \rightarrow \pi\left(\pi / h \| / g r_{g}^{-1}\right.$
via turewicz: $H_{2}\left(M ; \pi l\left[\pi_{1} M\right]\right) \cong \pi_{2}(M)$
0 -surgery chavachevisation of sliceness.
$K \subseteq S^{3}$ TOP slice iff $M_{k}:=S_{0}^{3}(k)=\partial W^{4}$ for W compact, oriented s.t. (i) $Z \cong \cong H_{1}\left(M_{k}\right) \rightarrow H_{1}(W)$ is an isom.
(ii) $\pi_{1} W$ is normally $g e n$ - by μ_{k} (mevidian) $\subseteq M_{k}$.
(iii) $\mathrm{H}_{2} \mathrm{~W}=0$

Sphere eubedeling thm [Freedman - Quinn '90]
$f, g: s^{2} \longrightarrow W^{4}$ s.t. $\mu(f)=0, \lambda(f, g)=1, g$ has hinial
$\pi_{1} W=$ abelian or finite
Then f is homotopic to a loc. flat eurb. \bar{f} \& g is lomotopic to an immersion \bar{g} s.t. $\bar{f} x \bar{g}=p t$. I move general theorems]

Proof sketch [rougen idea of singerythy approach to buiding nefed
Goal: Build W s.r. $\partial W=M_{k}, W \simeq s^{1}$.
Step 1: Build V^{4} s.t. $\partial V=M_{k}$ s.t. V spin. i.e. $w_{1}(V)=0=w_{2}(V)$

equiv. tangeutbundk mivial over 2-steelet
$F:=$ Serfertsmface, genus g
$F^{\uparrow}:=$ Sufert surface F, intuior pusered in
$\hat{F}:=F^{\hat{\imath}} \cup D^{2} \times 0$ nadially

Note: $\partial X_{0}(k)$
Define $V:=\left(X_{0}(K) \backslash \nu \hat{F}\right) \cup\left(\underset{\uparrow}{ }\left(\mathrm{Hg}_{\mathrm{g}} \times S^{1}\right)\right.$ geunsg handlebody.
fact: $\operatorname{Arf}(k)=0 \Rightarrow V$ spin
Compute: $\pi_{1}(V) \cong \not Z_{L}<\mu_{k} \subseteq M_{k} \gg$.
$H_{1}\left(M_{K} ; \Pi[\pi /]\right)=0 \Rightarrow$ equivariant int form on V is i.e. Alex poly $=1$ nonsingnlar

Consider $\left.\Pi_{2}(v), \lambda, \mu\right) \in L_{4}(\mathbb{T}[\pi / 4])$
the L-group of "non-singular quadratic forms", ie. λ sesquilinear, thermitian, using. bilinear form r quadratic form.
Considered modulo "hypubohi forms" ie. of the form $\oplus\left[\begin{array}{cc}01 \\ 10,\end{array}\right.$
fact: $L_{4}(M[7 L])$ well-understood
$\cong 87 \mathrm{~L}$, generated by "E\& form" [see part 2]
fact: \exists closed, TOP 4-wifed E with $\left(\pi_{2} E, \lambda_{E} \mu_{E}\right)=E 8$ form.
Step 2: Construct $V^{\prime}:=V \# \pm n E$ st. $\left(\pi_{2} V^{\prime}, \lambda V^{\prime}, \mu_{v^{\prime}}\right)=0 \in L_{4}\left(7 / P^{\prime} \pi_{4}^{\prime}\right.$ fact: shill spin
Step 3: Conshuct W using surgery.
$\left(\pi_{2} v^{\prime}, \lambda_{v^{\prime}}, \mu_{V^{\prime}}\right)=0 \in L_{4}(7[7 /]) \Rightarrow$ int form is $\oplus\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
In the nicest case: $\exists f, g: S^{2} \rightarrow v^{\prime}$ s.t. $\lambda(f, g)=1$
V^{\prime} spin $\Rightarrow f_{1} g$ minial normal bundle,

$$
\mu(f)=0=\mu(g)
$$

Sphere embedding tum $\Rightarrow \exists \bar{f}_{1} \bar{g}$ st.

$$
\begin{aligned}
& \bar{f}: s^{2} \longrightarrow V^{\prime} \quad \bar{f} \\
& \bar{g}: s^{2} \longrightarrow v^{\prime}
\end{aligned}
$$

Let $W:=V^{\prime} \backslash\left(\bar{f} \times D^{2}\right) \cup\left(D^{3} \times S^{1}\right)$
Check: $\pi_{2} W=0, \pi_{1} W \cong \pi$, and

Corollary: $\operatorname{loh}(R H T)$ is TOP slice.

Part II: Obstructions from Donaldson's theorem.
E8 form : $7 \psi^{8} \times 74^{8} \longrightarrow 7 u$
adjacency matrix for:

check: $\operatorname{det}(E 8)=1$
$E 8(v, v)>0 \quad \forall v \neq 0$ ie. E8 positive definite.
$\xrightarrow{\text { [Note: many people rather use Es to mean the negative definite }}$ vision]
Recall: M^{4} closed, oriented, by Poincare' duality \exists intersection form $Q_{M}: H_{2}(M ; \Pi L) \times H_{2}(M ; \Pi L) \rightarrow \Pi L$
ie. a symmetric, mi modular, integral, bilinear form.

Q: which T forms are realised as intersechionforms ofamflds?
A1: [Freedman] Evens such form is realised for a TOP eeg. the Es form.
[Can do construction at end if someone asks]
A2: [Rochlin] Es is not the int form of a $\pi_{4}=1 \quad$ smooth 4-uffes [Move generally, $\sigma\left(Q_{M}\right)$ fer closed, Roth, spin is div by 16]
A3: [Donaldson] M^{4} closed, smooth, oriented, Q_{M} positive definite. Then $Q_{M} \cong n\langle+1\rangle$ for sone n.
[These smooth exclusions ave rongllyalso why we knew sugary thy "does not work" in dim
Pos.def forms, even:

rR	8	16	24	32	40
$\#$	1	2	4	$>10^{7}$	$>10^{51}$

Idea: Ksmoothly slice $\Rightarrow \Sigma_{2}(k)$, double branched ion

$$
=\partial V^{4} \text { st. } \quad \begin{aligned}
& H *(V ; \mathbb{C})=0 . \\
& \text { Compact orient }
\end{aligned}
$$

\checkmark compact, oriented
$\left[\right.$ Similarly, $S_{ \pm 1}^{3}(k)=\partial W^{4}$ st. W compact, oriented and $\left.H_{*}(W ; \pi)=0\right]$
Choose k st. $\quad \Sigma_{2}(k)=\partial E \quad\left[\right.$ or $\left.S_{ \pm 1}^{3}(k)=\partial E\right]$
 has nonstandard pos. Definite intersection form.

$$
Q_{E U V} \neq n\langle+1\rangle
$$

\Rightarrow Knot sin. slice.
[The precise details of the following are not important. Focus on the proof outline above!]

\rightarrow Wh(RHT) not 8 m slice.

